首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3255篇
  免费   227篇
  国内免费   1篇
  2023年   8篇
  2022年   9篇
  2021年   56篇
  2020年   38篇
  2019年   45篇
  2018年   92篇
  2017年   64篇
  2016年   123篇
  2015年   163篇
  2014年   221篇
  2013年   243篇
  2012年   289篇
  2011年   275篇
  2010年   173篇
  2009年   162篇
  2008年   197篇
  2007年   190篇
  2006年   177篇
  2005年   142篇
  2004年   181篇
  2003年   108篇
  2002年   102篇
  2001年   109篇
  2000年   70篇
  1999年   58篇
  1998年   18篇
  1997年   21篇
  1996年   10篇
  1995年   11篇
  1994年   6篇
  1993年   11篇
  1992年   16篇
  1991年   18篇
  1990年   21篇
  1989年   16篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有3483条查询结果,搜索用时 390 毫秒
91.
ObjectivesTo assess the value of single and serial fetal biometry for the prediction of small- (SGA) and large-for-gestational-age (LGA) neonates delivered preterm or at term.MethodsA cohort study of 3,971 women with singleton pregnancies was conducted from the first trimester until delivery with 3,440 pregnancies (17,334 scans) meeting the following inclusion criteria: 1) delivery of a live neonate after 33 gestational weeks and 2) two or more ultrasound examinations with fetal biometry parameters obtained at ≤36 weeks. Primary outcomes were SGA (<5th centile) and LGA (>95th centile) at birth based on INTERGROWTH-21st gender-specific standards. Fetus-specific estimated fetal weight (EFW) trajectories were calculated by linear mixed-effects models using data up to a fixed gestational age (GA) cutoff (28, 32, or 36 weeks) for fetuses having two or more measurements before the GA cutoff and not already delivered. A screen test positive for single biometry was based on Z-scores of EFW at the last scan before each GA cut-off so that the false positive rate (FPR) was 10%. Similarly, a screen test positive for the longitudinal analysis was based on the projected (extrapolated) EFW at 40 weeks from all available measurements before each cutoff for each fetus.ResultsFetal abdominal and head circumference measurements, as well as birth weights in the Detroit population, matched well to the INTERGROWTH-21st standards, yet this was not the case for biparietal diameter (BPD) and femur length (FL) (up to 9% and 10% discrepancy for mean and confidence intervals, respectively), mainly due to differences in the measurement technique. Single biometry based on EFW at the last scan at ≤32 weeks (GA IQR: 27.4–30.9 weeks) had a sensitivity of 50% and 53% (FPR = 10%) to detect preterm and term SGA and LGA neonates, respectively (AUC of 82% both). For the detection of LGA using data up to 32- and 36-week cutoffs, single biometry analysis had higher sensitivity than longitudinal analysis (52% vs 46% and 62% vs 52%, respectively; both p<0.05). Restricting the analysis to subjects with the last observation taken within two weeks from the cutoff, the sensitivity for detection of LGA, but not SGA, increased to 65% and 72% for single biometry at the 32- and 36-week cutoffs, respectively. SGA screening performance was higher for preterm (<37 weeks) than for term cases (73% vs 46% sensitivity; p<0.05) for single biometry at ≤32 weeks.ConclusionsWhen growth abnormalities are defined based on birth weight, growth velocity (captured in the longitudinal analysis) does not provide additional information when compared to the last measurement for predicting SGA and LGA neonates, with both approaches detecting one-half of the neonates (FPR = 10%) from data collected at ≤32 weeks. Unlike for SGA, LGA detection can be improved if ultrasound scans are scheduled as close as possible to the gestational-age cutoff when a decision regarding the clinical management of the patient needs to be made. Screening performance for SGA is higher for neonates that will be delivered preterm.  相似文献   
92.
93.
Although it is well known that low-molecular-weight glutenin subunits (LMW-GS) from wheat affect bread and noodle processing quality, the function of specific LMW-GS proteins remains unclear. It is important to find the genes that correspond to individual LMW-GS proteins in order to understand the functions of specific proteins. The objective of this study was to link LMW-GS genes and haplotypes characterized using well known Glu-A3, Glu-B3, and Glu-D3 gene-specific primers to their protein products in a single wheat variety. A total of 36 LMW-GS genes and pseudogenes were amplified from the Korean cultivar Keumkang. These include 11 Glu-3 gene haplotypes, two from the Glu-A3 locus, two from the Glu-B3 locus, and seven from the Glu-D3 locus. To establish relationships between gene haplotypes and their protein products, a glutenin protein fraction was separated by two-dimensional gel electrophoresis (2-DGE) and 17 protein spots were analyzed by N-terminal amino acid sequencing and tandem mass spectrometry (MS/MS). LMW-GS proteins were identified that corresponded to all Glu-3 gene haplotypes except the pseudogenes. This is the first report of the comprehensive characterization of LMW-GS genes and their corresponding proteins in a single wheat cultivar. Our approach will be useful to understand the contributions of individual LMW-GS to the end-use quality of flour.  相似文献   
94.
95.
96.
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson’s disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.  相似文献   
97.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   
98.
99.
Cho  Bumrae  Lee  Eun-Jin  Ahn  Sun Mi  Kim  Ghangyong  Lee  Sang Hoon  Ji  Dal-Young  Kang  Jung-Taek 《Transgenic research》2019,28(5-6):549-559
Transgenic Research - Islet xenotransplantation is a promising treatment for type I diabetes. Numerous studies of islet xenotransplantation have used pig-to-nonhuman primate transplantation models....  相似文献   
100.
Indirubin-based compounds affect diverse biological processes, such as inflammation and angiogenesis. In this study, we tested a novel indirubin derivative, LDD-1819 (2-((((2Z,3E)-5-hydroxy-5′-nitro-2′-oxo-[2,3′-biindolinylidene]-3-ylidene)amino)oxy)ethan-1-aminium chloride) for two major biological activities: cell plasticity and anti-cancer activity. Biological assays indicated that LDD-1819 induced somatic cell plasticity. LDD-1819 potentiated myoblast reprogramming into osteogenic cells and fibroblast reprogramming into adipogenic cells. Interestingly, in an assay of skeletal muscle dedifferentiation, LDD-1819 induced human muscle cellularization and blocked residual proliferative activity to produce a population of mononuclear refractory cells, which is also observed in the early stages of limb regeneration in urodele amphibians. In cancer cell lines, LDD-1819 treatment inhibited cell invasion and selectively induced apoptosis compared to normal cells. In an animal tumor xenograft model, LDD-1819 reduced human cancer cell metastasis in vivo at doses that did not produce toxicity. Biochemical assays showed that LDD-1819 possessed inhibitory activity against glycogen synthase kinase-3β, which is linked to cell plasticity, and aurora kinase, which regulates carcinogenesis. These results indicate that novel indirubin derivative LDD-1819 is a dual inhibitor of glycogen synthase kinase-3β and aurora A kinase, and has potential for development as an anti-cancer drug or as a reprogramming agent for cell-therapy based approaches to treat degenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号